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Abstract

A ferroelastic switching model for single crystal piezoceramic compounds is developed. The model is based
on a phenomenological Landau-Devonshire type thermodynamic theory for the materials. The model incor-
porates externally applied electric fields and compressive stress inputs to the crystals and models the 90◦ and
180◦ ferroelastic and ferroelectric switching induced by the inputs. Properties of the ferroelastic model are
qualitatively similar to experimental PLZT data.
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1. Introduction

Lead zirconate titanate (PZT)-based transducers have a variety of high-performance applications ranging
from high-speed switching to nanoscale positioning. Stress-biased actuators such as THin layer UNimorph
ferroelectric Driver and sEnoR (THUNDER) and Reduced And INternally Biased Oxide Wafer (Rainbow)
exhibit enhanced displacements due to a variety of mechanisms including stress-induced domain alignment
[7, 4, 2]. At high stresses, ferroelastic switching must be incorporated into models to maintain the accuracy
needed for high-performance applications. Inclusion of ferroelastic switching is also necessary to model the
stress-dependent electromechanical behavior measured in THUNDER transducers [7].

This paper develops a ferroelastic switching model for single crystal ferroceramic compounds that is based
on a phenomenological Landau-Devonshire type thermodynamic theory of PbTiO3 developed in [1]. The model
incorporates externally applied electric field and compressive stress inputs to the materials and models the 90◦

and 180◦ ferroelastic and ferroelectric switching induced by the inputs. Properties of the ferroelastic model
are investigated and shown to be qualitatively analogous to experimental PLZT data reported in [3]. Work to
directly compare the model to experimental data is ongoing.

2. Ferroelectric and Ferroelastic Switching Mechanisms

In this section, we review the ferroelectric and ferroelastic switching mechanisms in ferroelectric compounds
which we illustrate in the context of PbTiO3. As outlined in [3], lead titanate (PbTiO3) has an ABO3 perovskite
oxide structure. For temperatures above the Curie temperature Tc, the structure of PbTiO3 is cubic whereas
for T < Tc, the structure of lead titanate is either tetragonal, orthorhombic or rhombohedral. To simplify our
model, we consider the two dimensional case where the polarization has values only in the 1 and 3 directions,
denoted by P1 and P3, respectively. Therefore, we shall limit our discussion to the paraelectric cubic structure
and the ferroelectric tetragonal structure for PbTiO3 which are illustrated in Figure 1.
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Figure 1. (a) High temperature paraelectric cubic form of lead titanate, and (b) low temperature ferroelectric
tetragonal form of lead titanate.

Ferroelectric switching is induced by the application of an electric field that is larger in magnitude than the
coercive field Ec. This causes the central Ti+4 ion to relocate to a new equilibrium position, resulting in a 180◦

change in polarization that is parallel to the applied field as depicted in Figure 2(a). Ferroelastic switching
is caused by the application of a stress that is larger in magnitude than the coercive stress σc. The resulting
equilibrium position of the Ti+4 ion results in a 90◦ change in polarization that is perpendicular to the applied
stress as illustrated in Figure 2(b). The ferroelectric and ferroelastic switching mechanisms cause a hysteretic
relationship between input fields E and σ and output polarization P and strains ε. Details regarding a typical
ferroelectric and ferroelastic response of soft piezoelectric ceramics can be found in [3].

Figures 3(a) and 3(b) illustrate the relationship between an externally applied field and the polarization and
strains induced in a soft PZT. At point A, the electric field is sufficiently strong so that all the dipoles form one
domain that is aligned in the direction of the applied field. As the field is decreased in magnitude it approaches
the coercive field. In the region around point B, 180◦ switching occurs. This often includes 90◦ switching as
indicated by the presence of a negative strain at point B as depicted in Figure 3(b). At point C, all the domains
have switched and the dipoles form one domain that is aligned in the direction of the electric field. At point C,
the polarization is opposite to that at point A whereas the strains have the same value. As the field is again
reduced in magnitude, 90◦ switching occurs at point D and rapidly continues back to point A where the full
180◦ switch has occurred and the dipoles are again aligned with the applied electric field.

Figures 3(c) and 3(d) illustrate the relationship between an externally applied stress and the polarization
and strains induced in the soft PLZT. At point A, the dipoles are aligned in the positive 3 direction and the
material acts as one domain. As the compressive stress is increased in magnitude, it approaches the coercive
stress. In the region around point B, 90◦ switching occurs and the dipoles begin to align perpendicular to the
direction of the applied stress. This is indicated by the presence of a negative strain at point B in Figure 3(d).
As the stress is reduced in magnitude, the material stays poled perpendicular to the applied stress.
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Figure 2. (a) 180◦ switch induced by an applied electric field, and (b) 90◦ switch induced by an applied stress.
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Figure 3. (a) Hysteretic field-polarization relation for bulk PLZT, (b) field-strain behavior of PLZT, (c)
stress-polarization relation for PLZT, and (d) stress-strain behavior of PLZT.

3. Ferroelectric Switching Model

We summarize here a ferroelectric switching model which characterizes the hysteretic field-polarization and
field-strain relations depicted in Figures 3(a) and 3(b). As detailed in [8], macroscopic models for the hys-
teretic electric field-polarization relation in piezoceramics are typically based on phenomenological principles,
thermodynamic tenets, or energy formulations employed in concert with homogenization techniques. Preisach
theory has the advantage of providing a mathematical model quantifying hysteresis when the underlying physics
is poorly understood. However, the resulting models tend to have a large number of nonphysical parameters
which is undesirable for parameter identification. Also, the original Preisach theory does not accommodate
reversible effects or variable operating temperatures, and the inclusion of such effects significantly diminishes
the efficiency of extended models.

The macroscopic ferroelectric polarization model summarized here was developed in [8] through a combi-
nation of free energy principles at the lattice level and stochastic homogenization techniques to incorporate
material nonhomogeneaties and variable effective fields. As detailed in [8], the resulting macroscopic model
guarantees closure of biased minor loops in quasistatic operating regimes and incorporates reversible effects.
The model is sufficiently low-order to facilitate real-time control implementation as illustrated for an analogous
magnetic model in [6]. Boltzmann principles are used to construct the Helmholtz energy through an internal en-
ergy balance of positive and negative dipole configurations and entropy effects. A Gibbs relation G quantifying
the change in the energy landscape due to an applied field is provided by the inclusion of the electrostatic work
term and in the limit of low thermal activation, the necessary condition ∂G

∂P
= 0 gives the local polarization.

3.1 Local Average Polarization

For fixed temperatures, we employ the theory of [8] in which it is illustrated that a reasonable expression
for the Helmholtz energy is the piecewise quadradic relation

ψ(P ) =





1
2
η (P + PR)

2
, P ≤ −PI

1
2
η (P − PR)

2
, P ≥ PI

1
2
η (PI − PR)

(
P 2

PI

− PR

)
, |P | < PI

(1)

where PI and PR denote the positive inflection point and polarization at which the minimum occurs. The
resulting Gibbs free energy is derived by combining the potential energy of a dipole in the field with the
Helmholtz free energy throughout the lattice to yield

G = ψ − EP. (2)

It is illustrated in [8] that under the assumption of low thermal activation, the local average polarization P̄ ,
at fixed temperature, can be derived from the necessary condition that ∂G

∂P
= 0. For computational efficiency,

P̄ is formulated as

P̄ =
E

η
+ PR∆ (3)
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where ∆ = 1 if evaluating on the upper branch of the hysteresis kernel and ∆ = −1 if evaluating on the lower
branch. Details regarding numerical algorithms for constructing ∆ as well as the development of a relation for
P̄ which incorporates frequency and thermal effects are provided in [8].

3.2 Macroscopic Polarization Model

Nonuniformities in the lattice structure of PZT produce a distribution of Helmholtz and Gibbs energy
profiles which can be manifested as variations in the local coercive field and local remanent polarization and
can produce differing saturation behavior after dipole switching. Other variations can be produced by stress
nonhomogeneities, nonuniform lattice orientations across grain boundaries, and crystalline anisotropies.

To incorporate lattice variability, we consider the coercive field Ec to be a manifestation of an underlying
distribution ν1(Ec) rather than fixed values which is typically assumed for single crystals having a uniform
lattice structure. To create a macroscopic model for the polarization, we also consider the variation of effective
fields in the material. As detailed in [8], an applied field in a ferroelectric material is augmented by fields
generated by neighboring dipoles which produce nonhomogeneous effective fields in the material. This, along
with various other processes, produces variations in the applied field that can significantly alter the resulting
polarization. To incorporate these variations, we consider the effective field to be distributed about the applied
field by a density ν2(Ee).

The introduction of variations in the effective field produces domain switching in advance of the remanence
point in accordance with observations from experimental data. The complete macroscopic polarization model,
as derived in [8], for nonhomogeneous, polycrystalline materials with variable effective fields is given by

[P (E)] =

∫ ∞

0

∫ ∞

−∞

[
P̄ (E + ε;Ec)

]
ν1(Ec)ν2(Ee)dEedEc (4)

where P̄ is defined by (3). Note that (4) does not incorporate ferroelastic coupling so this formulation of
the polarization model should be restricted to low stress regimes. As shown in [4, 8], the ferroelectric model
accurately and efficiently models the field-polarization behavior depicted in Figure 3(a). However, the model
does not describe the stress dependent processes including those illustrated in Figures 3(c) and 3(d).

4. Ferroelastic Switching Model

Here we introduce a ferroelastic switching model which quantifies the hysteretic stress-polarization and stress-
strain relationships depicted in Figures 3(c) and 3(d) and also characterizes the hysteretic field-polarization and
field-strain relationships depicted in Figures 3(a) and 3(b). The ferroelastic model is essentially a extension of
the ferroelectric model described in the previous section and is based on a phenomenological Landau-Devonshire
energy relation as employed in [1].

To model the internal free-energy of a lead titanate crystal, we use a 2D Landau-Devonshire free-energy
for materials exhibiting second-order phase transitions. We consider electric field and stress inputs ( ~E, ~σ) and

polarization and strain outputs ( ~P , ~ε) to have components in the 1 and 3 directions. The Landau-Devonshire
free-energy density is taken to be

ψP (~P ) = α1P
2
1 + α3P

2
3 + α11P

4
1 + α33P

4
3 + α31P

2
3P

2
1 (5)

and is a function of the two allowed polarization values P1 and P3. The coefficients are chosen so that αij > 0
and αi < 0 below the Curie temperature and can be related to physical properties of the PbTiO3 crystal such
as the remanence polarization PR and coercive field Ec by equations (17) and (18). The electromechanical
coupling energy density is given by

ψes(~P , ~ε) = −a1ε1P1 − a3ε3P3 − a13ε1P3 − a31ε3P1 − q1ε1P
2
1 − q3ε3P

2
3 − q13ε1P

2
3 − q31ε3P

2
1 (6)

where aij are the piezoelectric coupling coefficients and qij are the electrostrictive coupling coefficients. Ignoring
shear effects, the elastic free-energy density is

ψel(~ε) =
1

2
Y1ε

2
1 +

1

2
Y3ε

2
3 (7)
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Figure 4. Gibbs free energy landscape with four local minimum for the 4 allowed polarizations: ±P1, ±P3.

where Yi are the elastic coefficients. The total free-energy density is then given by

ψ(~P , ~ε) = ψP (~P ) + ψes(~P , ~ε) + ψel(~ε). (8)

The work due to an externally applied electric field and an applied stress is incorporated by employing a Gibbs
energy of the form

G( ~E, ~P , ~σ, ~ε) = ψ( ~P , ~ε)− ~E · ~P − ~σ · ~ε. (9)

The necessary conditions for minimizing the Gibbs energy are ∂G
∂ε1

= 0, ∂G
∂ε3

= 0, ∂G
∂P1

= 0 and ∂G
∂P3

= 0.
These conditions specify how the internal polarization and strains change to minimize the internal energy when
an external force is applied and thermal activation is negligable. The condition ∂G

∂ε1

= 0 implies that

ε1 = Y −1
1

(
σ1 + a1P1 + a13P3 + q1P

2
1 + q13P

2
3

)
(10)

and ∂G
∂ε3

= 0 implies that

ε3 = Y −1
3

(
σ3 + a3P3 + a31P1 + q3P

2
3 + q31P

2
1

)
. (11)

These relations allow us to determine explicit expressions for the strains. In a manner analogous to that employed
in [5] for a stress-free state, we substitute equations (10) and (11) into the Gibbs energy (9) to directly couple
the stress and the polarization. This yields

G( ~E, ~P , ~σ) = ψ̂(~P , ~σ)− ~E · ~P (12)

where
ψ̂(~P , ~σ) = γ1P

4
1 + γ2P

4
3 + γ3P

2
3P

2
1 + γ4P

3
1 + γ5P

3
3 + γ6P

2
1P3 + γ7P1P

2
3

+γ8P
2
1 + γ9P

2
3 + γ10P3P1 + γ11P1 + γ12P3 + γ13.

(13)

The Gibbs energy at zero stress and zero electric field is plotted in Figure 4. There are four local minimum each
corresponding to the four allowed polarization states ±P1 and ±P3. Given an input pair ( ~E, ~σ), the polarization
is then specified by the minimum

min
P1,P3

G( ~E, ~P , ~σ) = min
P1,P3

ψ̂(~P , ~σ)− ~E · ~P . (14)

The ferroelastic model thus quantifies the (P1, P3) pair that minimizes the total energy of the system and the
corresponding strain pair (ε1, ε3) are computed by equations (10) and (11).

As mentioned previously, several of the coefficients in the ferroelastic model are related to physical material
properties, thus allowing a means of determining their values. The remenant polarization PR and coercive field
Ec are computed by considering a stress free Gibbs energy

G( ~E, ~P ) = ψ(~P )− ~E · ~P . (15)

5



Furthermore, the conditions P1 = 0 and ∂G
∂P3

= 0 imply that

4α33P
3
3 + 2α3P3 − E3 = 0. (16)

As outlined in [9], equation (16) has three real roots, of which at least two are equal if the discriminant is 0.
The coercive field value for which this property is satisfied is

Ec =

√
−43α3

3

63α33

. (17)

When E3 = 0, the remenant polarization determined from solving (16) is given by

PR =

√
−α3

2α33

. (18)

Equations (17) and (18) provide a system of two equations and two unknowns sufficient to solve for α3 and
α33 if Ec and PR are known. A similar processes may be applied to find α1 and α11 if the energy landscape is
known to be nonsymmetric.

5. Model Results

To numerically illustrate the properties of the ferroelastic model, an applied electric field E3 and an applied
compressive stress σ3 are applied in the 3-direction. The resulting polarization P3 and the strain ε3 are computed
and plotted in Figures 5-7. Figure 5 illustrates the E3-P3 and E3-ε3 behavior with no compressive stress. The
E3-P3 and E3-ε3 behavior with a constant applied stress of -20 MPa is depicted in Figure 6. Figure 7 contains
a plot of P3 and ε3 verses an applied compressive stress at zero applied electric field. All simulations were
performed utilizing an unconstrained nonlinear optimization code with an analytic gradient and Hessian to
decrease computational effort.

The model yields relatively similar results when there is no applied external stress. However, as shown in [8],
the ferroelectric model has a piecewise linear hysteron where as the E3-P3 hysteron derived from the ferroelastic
model is not linear, as shown in Figure 5(a). Figure 6(a) illustrates how at higher constant compressive stresses,
the polarization remains in the 90◦ well longer than at lower compressive stresses during the 180◦ switch. This
is also verified by the negative strain exhibited in Figure 6(b).

Figure 7(a) illustrates how 90◦ switching occurs as the compressive stress increases beyond the coercive
stress. As the crystal is loaded in the 3-direction, dipoles initially oriented in the 3-direction switch to align
perpendicular to the applied stress and remain in the 1-direction during unloading. This is also verified by
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Figure 5. Ferroelectric behavior with no prestress. (a) E3-P3 relation, and (b) E3-ε3 relation.
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Figure 6. Ferroelectric behavior with a prestress of -20 MPa. (a) E3-P3 relation, and (b) E3-ε3 relation.

Figure 7(b) where the crystal has a negative strain after loading. All plots in Figures 5-7 are indicative of
single crystal behavior and are similar to the experimental results for PLZT at varying applied stresses that are
presented in [3]. Work to identify model parameters that match the experimental data is ongoing.

6. Concluding Remarks

The ferroelastic model presented in this paper characterizes the single crystal PbTiO3 response to an applied
electric field and an applied compressive stress. The ferroelastic model is derived using a 2D Landau-Devonshire
free energy for the Helmholtz free energy. Minimization of the Gibbs energy is then employed to model the 90◦

and 180◦ domain switching that occurs in soft PZT ceramics due to electric and stress inputs. The model is
an extension of the ferroelectric model presented in [8] and is based on the phenomenological thermodynamic
theory developed in [1] and [5]. Work to describe the bulk behavior of PZT and compare to experimental data
is ongoing.
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